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Goals

• Improve energy efficiency of the chlor-alkali process (by replacing 
hydrogen-evolving cathode with oxygen-consuming cathode)

• Lower the production cost

• Deliver products that would match or exceed current industrial purity 
standards

Objectives

• Identification of the best materials and structures

• Optimization of the operating conditions

• Bringing the oxygen cathode chlor-alkali process to the point where 
it will become attractive for the industry to invest in the process scale-
up and, eventually, in the implementation of the technology

Project Plan
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Reducing Energy Consumption in a Chlor-Alkali 
Reactor  Using an Oxygen Cathode

b) Chlor-Alkali Cell with Oxygen Cathode
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a) Conventional Chlor-Alkali Cell
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Typical Vcell = 3.2 V at 0.4 A cm -2 Typical Vcell = 2.3 V at 0.4 A cm -2

CELL REACTIONS
Anode: 2 Cl- → Cl2 + 2 e- ; Eo = 1.31V (pH=4)
Cathode: 2 H2O + 2 e- → H2 + 2 OH- (conventional); Eo = -0.84V (pH=14)

O2 + 2 H2O + 4 e- → 4 OH- (oxygen cathode); Eo = 0.39V (pH=14)
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Energy and the Chlor-Alkali Industry
Basic Assumptions and Technical Data
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Technology

• Potential energy recovery from H2: 550 kWh (PEM FC at 50% efficiency)

• Identical cost of compressing/storing O2/air for oxygen depolarized chlor-alkali

cell and PEM FC

• Identical cost of oxygen diffusion cathodes for chlor-alkali cell and PEM FC



Materials Science and Technology

Energy and the Chlor-Alkali Industry
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a) Conversion costs per 1 ton of chlorine calculated from conversion costs
per 1 ton of chlorine capacity and plant operating life of 10-40 years 

b) Estimated
c) Modern Chlor-Alkali Technology
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Summary of Recent Effort

• Cathode modifications aimed at:
- reducing flooding susceptibility of peroxide-destroying

structure
- increasing caustic current efficiency

• Selecting materials for the cathode hardware:
- determining effect of cathode hardware coating on peroxide

byproduct generation
- reducing hardware corrosion

• Anode modifications aimed at:
- increasing caustic current efficiency (CCE)
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Typical Experimental 
Conditions

•Zero-gap cell configuration: cell components in intimate contact (see scheme below)
•Cathode: 50 cm2 double-sided ELAT

•Catalyst: 20% Pt/C (0.5 mg/cm2)
•Cathode flow-field: LANL metal patterned flow-field 
•Carbon cloth spacer (Panex® 30) between the cathode and the membrane

•Anode: DSA® coated Ti meshes (size 120 and 60)
•Membrane: Asahi F4232

•Oxygen: pressure - 138 kPa (20 psig); flow - 5 times that required by stoichiometry; 
humidification - 0.5 cm3/min 
•Brine concentration: 200 g/dm3

•Temperature: 90oC

cathode 
flow -field

anode 
flow -field

cathode

anode

membrane

spacer
(some cells)

Panex® is a trademark of Zoltek Corporation and DSA®

is a trademark of Eltech Systems Corporation
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Hydroxide Formation:
1/2 O2 + H2O + 2 e- → 2 OH- H2O : O2 = 2 : 1

Peroxide Formation:
O2 + H2O + 2 e- → OOH- + OH- H2O : O2 = 1 : 1

Peroxide precipitation:
OOH- + OH- + 2 Na+ → Na2O2 + H2O

Peroxide Decomposition:
OOH- → 1/2 O2 + OH-

O2 + H2O + 2 e- → OOH- + OH- C

followed by:

OOH- + H2O + 2 e- → 3 OH- Pt
________________________________________________
O2 + 2 H2O + 4 e- → 4 OH- Pt

Processes in Alkaline Oxygen Electrode
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Reduction of Flooding Susceptibility of the 
Peroxide-Destroying Cathode Structure

Current densities were increased stepwise from 0.2 to 1.0 A/cm2

during first 70-100 hrs

Structure 1 – reference

Structure 2 – peroxide-
destroying structure,
patent application

Structure 3 – reduced
flooding, increased 
peroxide generation
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Effect of Cathode Hardware Coating
On Peroxide Generation 

Silver plated hardware is less effective as peroxide 
decomposition catalyst than gold plated hardware
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Effect of Cathode Modification on Caustic
Current Efficiency (CCE)
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Effect of Cathode Modification on the Cell Voltage 
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Cathode Hardware Corrosion

• Gold plated stainless steel (316) hardware 
moderate corrosion under open circuit conditions, 
very slight corrosion under the cathode gasket during 
electrolysis

• Gold plated nickel hardware
severe corrosion under open circuit conditions, non-
negligible corrosion under the cathode gasket during 
electrolysis

• Silver plated nickel hardware
excellent corrosion resistance under open circuit
conditions and during electrolysis
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Anode Side Processes Leading to Lowering
Caustic Current Efficiency (CCE)

• Oxygen evolution
2 H2O → 4 H+ + O2 + 4 e-

Excess of H+ is transported through the membrane to the
cathode compartment, where it neutralizes OH-

• Chlorine oxo-anion formation
Cl- + n H2O → 2n H+ + ClOn

- + 2n e- (not a mechanism)
Same effect as for O2 evolution

• Membrane blinding by chlorine gas
Local current densities higher than the membrane was
designed for lead to increased membrane permeability
and higher NaOH crossover
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Anode Modifications Aimed at Improving CCE
Material Compatibility Issue
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Improving Caustic Current Efficiency (CCE)
Through Anode Modifications

Structure 1 – original, unmodified

Structure 3 – improves caustic 
current efficiency at j ≤ 0.6 A/cm2,
invention disclosure submitted

Structure 4 – improves caustic
current efficiency at all current
densities, invention disclosure 
submitted
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Effect of Anode Modification on the Cell Voltage
Structures Improving CCE 
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Future Plans

• Membrane testing:
select the best membrane in terms of overall performance, 
i.e., cell voltage, current efficiency, product purity (already 
started)

• Testing unsupported catalysts:
Reduce catalyst loss

• Anode flow-field modifications:
Design an inexpensive scalable anode flow-field
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Industrial Use of Gas Diffusion Electrode Technology
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Cathode: O2 + 4 H+ + 4 e- → 2 H2O

Hydrogen Peroxide
Cathode: O2 + H2O + 2 e- → OH- + HO2

- Selective Hydrogenation of 
Unsaturated Compounds

Waste Treatment

Hydrogen Peroxide
Anode: H2 → 2 H+ + 2 e-

Cathode: O2 + 2 H+ + 2 e- → H2O2

Cell: H2 + O2 → H2O2

Hydroxylamine
Anode: 3/2 H2 → 3 H+ + 3 e-

Cathode: NO + 3 H+ + 3 e- → NH2OH
Cell: NO + 3/2 H2 → NH2OH

Chlor-Alkali
Anode: 4 Cl- → 2 Cl2 + 4 e-

Cathode: O2 + 2 H2O + 4 e- → 4 OH-

Cell : O2 + 2 H2O + 4 Cl- → 2 Cl2 + 4 OH-

Chlorate, Perchlorate
Anode: Cl- + 3 H2O → ClO3

- + 6 H+ + 6 e-

or
Anode: Cl- + 4 H2O → ClO4

- + 8 H+ + 8 e-

Pilot Plant Possible R@D
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